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Accurate velocity boundary conditions are critical to the success-
ful simulation of free surface fluid flow. It is shown in this paper
that previous approaches for the assignment of free surface velocity
boundary conditions in marker and cell methods artificially intro-
duce asymmatry and can even cause tha simulation to hreak up.
New approaches are presented that improve the accuracy of the
treatment of free surface velocity boundary conditions, The signifi-
cant advantages of the use of these new approaches are demon-
strated by simulation results obtained for hroken dam and cavity
filling problems. The new approaches do not artificially introduce
asymmetry. Although symmetry is a useful, tangible indicator, itis
shown that the significance of the new approaches extends beyond
the elimination of asymmetry. Their use enables the successful
simulation of problems with realistic values of viscosity and gravity,
problems for which breakup of the solution ocours if previous ap-
proaches are employed. © 1995 Academic Press, Inc.

1. INTRODUCTION

The finite difference simulation of transient, incompressible,
free surface fluid flow presents unique chalienges. Two of these
challenges are that the location of the free surface itself is
unknown and that no equation that describes changes of pres-
sure with time is available. In 1965, these challenges were first
addressed in the marker and cell (MAC) method by Harlow
and Welch [9] and Welch, Harlow, Shannon, and Daly |25].
They introduced massless markers that move with the fluid and
a novel finite difference solution algorithm for the velocity
field. The massless markers are used to define the location and
track the movement of the free surface, Several awthors have
presented extensions and modifications of the MAC mecthod
110, 13, 15, 20, 23, 24]. Hirt and Shannon [14] and Nichols
and Hirt {19] addressed the free surface stress conditions. Chan,
Street, and Fromm [6, 7] published the SUMMAC method for
ptane wave problems, which introduced the extrapoiation of
velocity components from the fluid interior to obtain velocity
boundary conditions. Another approach to the simulation of
single-valued free surface fluid flow problems, the height func-
tion method, was described by Bulgarelli, Casulli, and
Greenspan [5], Lardner and Song [16], and Loh and Rasmussen
[17]. Hirt, Cook, and Butler {1 1] presented a Lagrangian tech-
nique for flows that do not undergo large distortions. Amsden

and Harlow [2, 3] introduced the simplified marker and cell
(SMAC) method. Amsden [1] modified the SMAC method to
incorporate the use of surface markers and line segments for
single-valued free surfaces; Nakayama and Romero [18) ex-
tended the application of the SMAC method o fluid Alows that-
are almost three-dimensional, Chen, Jolmson, and Raad 8|
introduced the surface marker (SM) method, which represents
a modification ol the SMAC method to incorporate the usc of
surface markers, The SM method does not make use of tine
segments and is not limited to the simulation of problems with
single-valued free surfaces. In the SM method, new marker
treatiment and cell reflagging technigues are introduced that
result in significant reductions of the computer time and mem-
ory requirements. In other respects, the SM method is identical
to the SMAC methed. The methods associated with all of
the preceding extensions and modifications, while distinct, all
employ massless markers and a staggered grid of finite differ-
ence cells and are hereafter referred to generically as marker
and celi methods. A finite difference method for the simulation
of free surface fluid flow problems based on the concept of a
fractional volume of fluid (VOF) rather than on the use of
massless markers was developed by Hirt and Nichols [12];
Nichols, Hirt, and Hotchkiss {21]; Torrey, Cloutman, Mjols-
ness, and Hirt [22]; and Ashgriz and Poo [4]. The emphasis in
this paper is on marker and cell methods,

For any free surface fluid flow simulation method, the treat-
ment of the velocity boundary conditions associated with the
free surface has a crucial impact on the simulation. Because
of their importance to the simulation of free surface fluid flow,
the focus of the present paper is on the treatment of velocity
boundary conditions. In particular, the emphasis is on the treat-
ment of the velocity boundary conditions in connection with
the use of a marker and cell method. As the solution progresses,
velocity boundary conditions are required for the determination
of the fluid velocity field as well as for the movement of the
markers that define the location of the free surface,

In the next section, the basic compntational cycle associated
with the predictor—corrector solution algorithm introduced by
Amsden and Harlow [2] is outlined, and the steps in the compu-
tational cycle in which velocity boundary conditions are re-
quired are noted. Then, the three different types of velocity
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VELOCITY BOUNDARY CONDITIONS

boundary conditions are defined, and new methods for de-
termining surface, just outside tangential, and new internal
velocities are presented. Differences, as well as similarities,
between the new methods presented in this paper and the MAC
and SMAC approaches are noted. The height function method
and the extrapolation approach introduced in the SUMMAC
method, however, are not discussed since both methods are
limited to plane wave problems. Although the VOF method is
not a marker and cell method, it is worth noting that surface
and just outside tangential velocities are computed by use of
the MAC schemes in the VOF method, while new internal
velocities are estimated by use of the volume of fluid function.
In Section 6, the advantages of the use of the proposed velocity
boundary conditions are demonstrated by specific numerical ex-
amples.

2. THE COMPUTATIONAL CYCLE

One computational cycle in the simulation of unsteady free
surface fluid flow consists of the advancement of the discrete
field variables from an initial time #; to the subsequent time
t, + &t by accomplishing the seven steps listed below. The first
four steps represent a predictor—corrector algorithm for the
determination of the velocity field at & + &t In the predictor
stage of the soletion algorithm, the pressure is replaced by an
arbitrary pseudopressure €, and tentative velocities are then
calculated. Since the authors of SMAC [2] state (1) that the
pseudopressure field @ can enly affect the solution efficiency
of the Poisson equation, (2) that @ generally is set equal to
zero, and (3) that 8 in some cases must be set equal 1o zero,
we have decided to choose @ = 0 always in full cells. A
pseudopressure boundary condition is applied in surface cells
to satisfy the normal stress condition. Since pressure has been
ignored (or assigned an arbitrary value) in the full cells, the
tentative velocity field does not satisfy the incompressible conti-
nuity equation. The deviation from incompressibility is used
1o calculate a pressure potential' field ¢, which then is used to
correct the velocity field. In the final three steps, the velocity
boundary conditions are calculated, the new location of the free
surface is determined, and the velocity boundary conditions
associated with new fluid cells are assigned:

1. Compute a tentative velocity field, # and 0, at , + 8¢
from the preceding velocity field by the use of

~ 2 2 2
9 _ﬁzz__éu_v+,,(ﬂu+§_u)_,ae
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axt o ay']  ax &

' [n SMAC [2], three symbols ¢, 8, and drare used that are related to pressure.
The symbol ¢ is referred to as the “‘true pressure’ and is equal to the pressure
divided by the density; the symbol @ is referred to as the “*pseudopressure,”
and ¥ is simply referred to as a *“‘potential.”” The relationship between ¢, 8,
and i is ¢ = 6 + /S, which is found on page 5 of Ref. [2]. In other words,
this equation states that the true pressuze is the sum of the pseudopressure and
the potential divided by a time increment. The pressure potential 4 that we
refer to is precisely the potential 4 that is referred to in Ref. [2].
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where u and v are the x- and y-components of the fluid velocity;
g, and g, represent the x- and y-components of gravity, respec-
tively; 8 is the pseudopressure; and » is the kinematic viscosity
of the fluid.

2. Calculate the incompressibility deviation function D de-
fined by

o o0
=+ —. 2

dx dy @

3. Solve for the pressure potential field by use of the
Poisson equation

—+—==D 3)

4. Compute the corrected velocity components at #, + &t
by use of

. O -
=y—-——7—, v=Uv—
“ ox

(4)

g|&

5. Adjust the surface velocity and just outside tangential
velocity boundary conditions.

6. Track the movement and define the new location of the
fluid free surface.

7. Determine the velocity boundary conditions required in
the next calculational cycle.

The focus of this paper is on the algorithms required in Steps
5 and 7 of the computational cycle for the determination of
velocity boundary conditions. The algorithms employed in
Steps 5 and 7 to determine the velacity boundary conditions
are independent of the mathematical techniques used in Steps
1 through 4 in connection with Egs. (1)—(4). In order to discuss
these velocity boundary conditions in detail, it is first necessary
to describe the computational mesh.

In marker and cell methods, the staggered grid concept is
employed to locate the discrete field variables; and three differ-
ent control volumes, one for x-mormentum, one for y-momen-
tum, and one for mass conservation, are employed [9]. The
momentum control volumes are not discussed in this paper.
The mass conservation control volume, which coincides with
the computational cell, is of primary interest for the application
of free surface velocity boundary conditions.
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FIG. 1. Staggered grid locations of field variables for cell (7, J).

For cell (i, j}, as shown in Fig. 1, the discrete velocities u; ;,
Vi Wioy, and v, -y, are located at the mid-points of the faces
of the cell; while the pressure potential ¢, is located at the
center of the cell. Each cell within the computational domain
is flagged at each discrete value of time as one of four types:
empty, surface, full, or obstacle. In figures, these cells are
identified in shorthand notation as EMP, SUR, FUL, and OB,
respectively. An empty cell has no fluid in it; a surface cell
contains fluid and is adjacent to an empty cell; a full cell
contains fluid and has no empty neighbors; and an obstacle cell
defines the location of a rigid, stationary obstacle. In this paper,
velocities that are tentatively updated by use of Eqs. (1) and
then corrected by use of Eqs. (4) are referred to as internal
velocities. A velocity that must be determined by any other
means is referred to as a velocity boundary condition.

There are three distinct types of velocity boundary condi-
tions: new fiuid cell internal velocities, surface velocities, and
just outside tangential velocities. The surface and just outside
tangential velocities can be thought of as the free surface normal
and tangential velocity boundary conditions, respectively. On
the other hand, the new fluid cell internal velocities are not free
surface velocity boundary conditions at all. They are, however,
created by the advancement of the free surface and must be
initialized before they can be tentatively computed by use of
Eqgs. (1) and corrected by use of Eqs. (4) in the next computa-
tional cycle.

In each of the next three sections, one of the three distinct
types of velocity boundary conditions is defined; the previous
approaches for the determination of boundary conditions of that
type are described; and a new approach for the determination of
boundary conditions of that type is presented. New fluid cell
internal velocities are discussed first, followed by surface veloc-
ities and then just outside tangential velocities.

3. NEW FLUID CELL INTERNAL VELOCITIES

New fluid celis are created during a computational cycle by
the movement of markers itito cells that did not contain markers
at the start of the cycle. The internal velocities between new
fluid cells are unknown and must be assigned. In our new
approach, each unknown new fluid cell internal velocity is
assigned either the value of the closest known surface or internal
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velocity, or the average of two neighboring surface and/or
internal velocities. The basic idea behind our new approach is
that the most appropriate available velocity information in the
neighborhood of the unknown new fluid cell internal velocity
should be used. The most appropriate velocity information is
that which captures the momentum history of the fiuid that has
entered the new fluid cell. The information must be used in
such a way that no artificial asymmetry is introduced by the
velocity assignment scheme itself, as is the case for both the
MAC and SMAC velocity assignment schemes. The specific
details of the implementation of the new method are described
with reference to Fig. 2.

3.1. The New Procedure

In Fig. 2, cell (7, j) represents a new fluid cell that has been
created during the current computational cycle as a result of
marker movement, and #; ; is an unknown new internal velocity.
In the new methaod, the following hierarchical procedure is used
to assign a value to u;;:

(a} If both &, and u;;_, were known surface or internal
velocities at 1 = &, then

W = (Wi + w02

(b) Otherwise, if ;5 was a known surface or internal
velocity at ¢+ = #p, then

Hij = Hijpr-

(c} Otherwise, if 1,;-, was a known surface or internal
velocity at t = £, then
u,_}' = M,-J-_].

(d) Otherwise, both u,_,; and i, ; were known surface
velocities at 1 = 1y, and

U = (u‘_l‘}- + u;+|‘j)/2.

(ij+1) (+14+0)

) Uigj Y4 _J_':i:l,j
-1 T 6. ™ (i+1,) {+2,))

"
E

{i-1 (i+1,j-1)

FIG. 2. New fluid cell internal velocity u;;.
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This hierarchical procedure is based on the following consid-
erations: Cells (4, /) and (i + 1, j) both were empty cells at the
start of the computational cycle. Since the time step is such
that no marker can move during one cycle a distance as large
as the cell spacing, it is not possible for a marker to have moved
during the current cycle from either cell (| — 1, j) or (i + 2,
J) to the face on which 4;; is located. Therefore, any fluid that
has reached this face can only have come from cells (i, j — 1),
Gji+ D+ 17— 1), andiov (i + 1,7+ 1). Consequently,
;4 and u;;; are the candidaic neighboring fuid velocities
for use in the assignment of the new fluid cell internal velocity
u; ;. If both 4, ;,, and wu;;—, are available, they are averaged as
indicated in case (a). If only one is available, it is used as
indicated in cases {b) and (c). If neither u; ;;| nor u,;, is avail-
able, then all four cells (i, j — 1), (i, j + 1), (G + 1, — 1),
and (i + 1, j + 1) also were empty cells at the start of the
computational cycie. In titis case, the only possibility that can
result in u; ; becoming a new fluid cell internal velocity is that
both of cells (i — 1, j) and (i + 2, j) contained free surfaces that
were moving toward each other af the start of the computational
cycle. In this situation, u;; is set equal to the average of i,
and i, ; as indicated in case {d).

The new procedure for the assignment of unknown new
fluid celi internal velocities makes use of the most appropriate
available velocity information, while simultaneously avoiding
the artificial introduction of asymmetry. Alternative procedures
are employed in the MAC and SMAC methods for utilizing
the available velocity information to assign a value to an un-
known new fluid cell internal velocity. In contrast to the new
procedure, the MAC and SMAC procedures both artificially
introduce asymmetry, a fact that has not been reported pre-
viously in the literature. The details of the use of the new
procedure in connection with a specific example are presented
in the following. For comparison, the details of the use of the
MAC and SMAC procedures also are provided.

3.2. A Detailed Example

Several cells on the left and right sides of the axis of symme-
try of a symmetrical free surface fluid flow problem are dis-
played in Fig. 3. The general pattern of flow at the instant
under consideration is up and toward the axis of symmetry. To
facilitate the discussion, two horizontal grid lines are designated
by Jand J — [; two vertical grid lines on the left are designated
by L and L + 1; and two vertical grid lines on the right are
designated by R and R + 1. Grid lines L and R are equidistant
from the axis of symmetry. The locations of the free surface
before and after marker movemeat are indicated by solid and
dashed lines, respectively. Six markers /|, &, ..., [; are displayed
in the left half of the figure, and six markers, r, r;, ..., rg are
displayed in the right half. Arrows indicate the changes in the
positions of the markers that occur during marker movement.
The solution is assumed to be perfectly symmetrical prior to
marker movement. Therefore, w(l) = —u(r;) fori =1, ..., 6;
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where the notation u(/)) is used to indicate the x-component of
the velocity of marker ;. The velocities of the six markers
L, ..., I are, however, all assumed o be different. All of the
cells into which the markers move were empty cells at the
beginning of the computational cycle.

Following marker movement, the velocities #(L, J) and u{R,
J) both are unknown new fluid cell internal velocities that must
be assigned. The assignment of values to u(L, J) and u(R, J)
is the focus of this example. For symmetry to be maintained,
they must be assigned equal and opposite values.

For the new method, case (c) from Section 3.1 applies to
this particular example, and u(L, J} and «(R, J) therefore are
assigned according to

w(l, J) = u,, w(R, J)= —u,.
In the new method, it is ¢lear both that the most appropriate
available information has been used and that symmetry has
been maintained. The new approach is fundamentally different
than the approaches vsed in either the MAC or SMAC methods,
both of which introduce asymmetry artificially, as shown in
the following.

According to the MAC method [25, p. 79], an unknown new
internal velocity is assigned the average velocity of the markers
that have entered one of the two new fluid cells with which
the new internal velocity is associated. The result depends,
therefore, on whether the cells are swept from left to right or
from right to left. Regardless of the direction of cell sweeping,
an asymmetric result is obtained. For the example of Fig. 3, if
the direction of cell sweeping is from left to right, then the
values of u(L, J) and u(R, J) are determined by the velocities
of the markers that have entered cells (L, J) and (R, J), respec-
tively, with the result that

u(l, J)y = [u(l) + w(B))/2, w(R,J) = [u(r) + u(rs)]/2.
Since w(L, J) # —ulR, J), asymmetry is artificially introduced
by the velocity assignment procedure itself. If, on the other
hand, the direction of cell sweeping is from right to left, the
two unknown new internal velocities are determined instead
by the velocities of the markers that have entered cells (R +
1, Syand (L + 1, J), and the MAC velocity assignment proce-
dure leads to

uR, J) = Tu(ry + u(r))2, w(L, J) = [ull) + w2,
Once again, the values of «(R, J) and u(L, J) are not equal and
opposite, and asymmetry is artificially introduced.

For the SMAC method [2, p. 54], the unknown new internal
velocity is determined by the first marker to enter either one
of the two new fluid cells associated with the unknown new
internal velocity under consideration. The value assigned is
that of the closest appropriate velocity associated with the cell
from which that first marker came. As a consequence, the
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FIG. 3. New fluid cell velocities (L., J) and #(f, J) in a symmetrical problem.

SMAC result depends on the order in which the markers are
numbered. If the order of marker sequencing for the example
inFig 3is /), .., k. ..., 75, ..., ry; then the first marker to enter
cell (L, J) is L;; and the first marker to enter cell (R, J) is rs.
Therefore, the values assigned to the unknown new internal
velocities are

u(l, Jy = u,, uw(R,J)= —u,.
Since u, and u; are not equal, it is clear that w{L, J) # —u(R,
J) and that asymmetry is also artificially introduced by the
SMAC velocity assignment procedure, If the order of marker
sequencing instead is ry, ..., #¢, ..., fg, ..., {1 ; then the first markers
toentercells (R+ 1, Jyand (L + 1,J)are r; and Is, respectively,
with the result that

R, J) = —uy, w(L,J)= u,.
As before, the SMAC values of the new internal velocities are
not equal and opposite, and asymmetry is artificially introduced.

Examination of this example leaves no doubt that the MAC

and SMAC assignment procedures for unknown new fluid cell
internal velocities both artificially introduce asymmetry. The
example also demonstrates clearly that the new procedure accu-
rately utilizes the most appropriate information available and
does not artificially introduce asymmetry.

4. SURFACE VELOCITIES

A velocity that is normal to a face shared by a surface
cell and an empty cell is referred to as a surface velocity.
Consequently, velocities v,;—(, u;;, and u; ;,, of Fig. 4 ali are
surface velocities. A given surface cell can share faces with
one, two, or three empty cells, and different procedures for
assigning surface velocities apply in different situations. In the
following, the procedures used in the new method for treating
the four possible situations are presented. The procedure used

in the new method for the first situation is identical to the
procedure used in previous methods for the same situation.
New procedures are presented for the treatment of the other
three situations.

The main consideration in each situation is the satisfaction
of the continuity equation for the conirol volume represented
by the surface cell. All surface velocities must be assigned
twice during each computational cycle: first following the com-
putation of final velocities; then again following the movement
of markers and the reflagging of cells. In previous methods,
the same procedures are used to assign both the final surface
velocities and the new fiuid cell surface velocities. In the new
method presented in this paper, different procedures are used
in some situations for assigning surface velocities at the two
different steps in the computational cycle.

4.1. One Empty Neighbor

For a surface cell with one empty neighbor, the single surface
velocity is assigned by use of the continuity equation. For

il

FIG.4. Surface velocity and just outside tangential velocity boundary con-
ditions.
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FIG. 5. A surface cell with one empty neighbor (N = non-empty).

example, the surface velocity u,; in Fig. 5 is assigned ac-
cording to

uij =i — We;~ Vij-1) Sx /By, (3

where 8x and 8y represent the cell dimensions in the x- and
y-directions, respectively. There is no difference between this
approach and the approach used in both the MAC and
SMAC methods.

42, Two Adjacent Empty Neighbors

For the situation of a surface cell that has two adjacent empty
neighbors, as shown in Fig. 6, two different cases are recognized
in the new method. If neither of the non-empty neighbors is
an obstacle cell, the surface velocities u; ; and v;; shown in Fig,
6 are assigned as

Uij = Uimr s Vij = Upjere (6)

The continuity equation for celi (i, j) is clearly satisfied by
these assignments. This is exactly the approach used in both
the MAC and SMAC methods.

On the other hand, a new procedure is proposed when one
of the non-empty neighbors is an obstacle cell, as shown in

EMP
p

SUR |w;
N G Teme

FIG. 6. A surface cell with two adjacent empty neighbors (N = non-empty).
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FIG. 7. A surface cell (4, j) with two adjacent empty neighbors and one
obstacle neighbor.

Fig. 7. This important case, one that is not recognized at all in
previous methods, is not uncommon. It will ocenr repeatedly,
for example, as fluid moves along the face of a rigid obstacle.
The surface velocity assignment scheme presented above for
a surface cell with two adjacent empty neighbors is entirely
inappropriate in this case, The surface velocity assignment pro-
cedore for this case has a very significant influence on the
simulation of the advance of a free surface along an obstacle.

For cell (i, j) of Fig. 7, the new approach is to assign to the
surface velocity i, ; either the value of w;; , if 4;;  1s positive,
ot a zero value, if u,;-, is negative or zero. Then, the other
surface velocity v,; is calculated to ensure that the incompres-
sibility deviation D;; vanishes. In analytical terms, the new
approach is to assign the surface velocities for cell (i, j) of Fig.
7 according to

u;; = max(y;;;, 0},
Vij = Uijr — Wi 8}'#’5)5. (7)

Since cell {i — 1, j) is an obstacle cell, the value of u,._; is
zero. Consequently, i, ; does not appear in the expression for
v;; in Egs. (7).

This new approach was adopted for the following reasons.
If Eq. {6} is used for the situation shown in Fig. 7, then the
velocity u;; is set equal to u,_,;, which is zero since cell (i —
L. /) is an obstacle cell. As long as cell (i, j) remains a surface
cell with adjacent empty neighbors, u«, ; remains equal to zero,
regarclless of the value of u;;.,, which is the necarest fluid
velocity. In this special case, the value of x;-; ; does not have
any relation at all to the motion of the fluid that is moving up
the face of the vertical obstacle. It is more accurate in this case,
therefore, to assign &, ; the value of u, ;_,, the nearest horizontal
velocity that is related to the motion of the fluid. However, this
assignment is not appropriate when u, ;. is negative. If w;; , is
negative, the subsequent determination of u;; by use of the
continuity equation results in a value of v;; that is larger than
v; -1, and the result is that a very thin strip of fluid, much
narrower than the width of a cell, moves rapidly up the face
of the obstacle. Therefore, a value of zero is assigned to
when u,;;_, is negative.
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FIG. 8. A surface cell with two opposite empty neighbors (N = non-
empty).

4.3, Empty Neighbors on Opposite Sides

An original treatment that makes use of the incompressibility
deviation to compute appropriate values for the required surface
velocities is presented for the case of a surface cell with empty
neighbors on opposite sides. The new assignment procedure
also includes a special provision that applies if the surface cell
in question is a new fluid cell.,

The specific situation shown in Fig. 8.is referred to in the
description of the new procedure. Just prior to the assignment
of the surface velocities u; ;and u;_, ;, the incompressibility devi-
ation

W= Ui U= Ui
D, = -/ o Ly 7Y By Zht (8)

will, in general, not be equal to zero as a result of changes in
v;; and v;;-,. In order to ensure that D,; vanishes, the surface
velocities are adjusted according to

u,-,j= u,-.ij,-JJx;’ﬁZ (9)
u,-,ld = u,‘,u- + D!J 53(/2

Equations (8) and (9) are used to compute new surface velocities
as well as final surface velocities. For a new surface cell,
however, appropriate initial values of u,; and u,_,; first must
be obtained.

The velocities u;; and u;,; are unknown if cell (i, /) is a
new fluid cell. Therefore, if cell (i, j) is a new fluid cell, initial
values for u;; and u;_,, that capture the momentum history of
the fiuid that has entered the cell are assigned prior 1o the
calculation of D, ; according to

Hij= (i H.‘,j—l)lz
Ui-1,; = (Ht—l,jn + Mr—u—l)/z-
Then, D;; is computed by use of Eq. (8), and u,; and u,_, ; are

adjusted according to Eq. (9).
The new procedure described above ensures that the continu-
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ity equation is satisfied in a surface cell with empty neighbors
on opposite sides. In addition, the special case of a surface cell
with empty neighbors on opposite sides that happens also to
be a new fluid cell is recognized and treated. Importantly, the
new procedure does not artificially introduce asymmetry.

By contrast, the MAC method does not recognize the case
of a surface cell with empty neighbors on opposite faces at all,
and the SMAC procedure for the assignment of surface veloci-
ties in this case artificially introduces asymmetry. This conse-
quence of the SMAC procedure, which has not been noted
previously, is demonstrated in the following example.

A situation involving two surface cells with empty neighbors
on opposite faces is shown in Fig. 9. The two cells are equidis-
tant from the axis of symmetry of a symmetrical free surface
fluid flow problem. At the start of the computational cycle, it
is assumed that the velocity field, including the surface veloci-
ties, is perfectly symmetrical and, in particular, that

”(L;J)= _“(st):uas
u(L—1,1)=—ulR+1,J)=u,.

In addition, it is also assumed that the final internal velocity
field also is symmetrical and, therefore, that

L J-D=vR+1,J-1),
v(L. J) = v(R + 1,.1).

The focus of this example is on the subsequent assignment of
the surface velocities u(L. — 1, 1), u(L, 1), u(R, ), and u(R +
1. Jy.

According to the SMAC procedure [2, p. 12], the surface
velocity on the left side of the surface cell in question retains
its previous value, while the surface velocity on the right side
of the cell is computed by use of the continuity equation. For
this example, therefore, the SMAC results are

u(L. — 1,7y = u, (retains previous value)

w(l, Jy=u, — [0(L,J) — v{l,J— 1}] 6v/éx (assigned)
w(R,J) = —u, (retains previous value)
HR+ 1,5 =—u,—[v(R+ 1,J)
—o(R+1,J— 1] 6¥/8x (assigned).
Since w(L, N # —w(R, Nand u(L — 1,y = —u(R + 1, 1), it

is clear that the SMAC surface velocity assignment procedure
itself has artificially introduced asymmetry.

4.4. Three Empty Neighbors

For a new fluid cell that also is a surface cell with three
empty neighbors, an original approach is introduced. The occur-
rence of this situation is not uncommon in transient free surface
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fluid flow simulations. The specific situation shown in Fig. 10b
will be referred to in the description of the new approach. This
situation will occur when a small amount of fluid enters cell
(Z, j) from below. Since the pressures in the empty cells on the
left and the right of cell (7, j) are equal, the new surface velocities
u;; and u,_,; are set equal to each other and to the average of
the nearest internal velocities according to
Ui = Ui ; = (H.‘,j—| + Ui—].j—l)/z- (1
The other new surface velocity v;; is simply assigned the value
of internal velocity v;;-,. With these choices, the incompres-
sibitity deviation D, ; vanishes. In addition, no artificial asymme-
try is introduced by this new procedure.
1f surface cell {7, j) is not a new fluid cell, the same procedure
used in the MAC method is used in the new method. The
surface velocity on the face opposite the non-empty face is
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Surface cells with empty neighbors on opposite sides in a symmetrical problem.

assigned the value of the velocity on the non-empty face, and the
values of the other two surface velocities are left unchanged.
Therefore, if cell (i, j) in Fig. 10b is not a new fluid cell,
#;; and u;; do not change, and v;; is assigned the value
of v;;-. No artificial asymmetry is introduced by this proce-
dure, and the continuity equation is satisfied for the surface
cell. 1t is noted in passing that the SMAC procedure, on
the other hand, does artificially introduce asymmetry for two
of the four possible situations of a surface cell with three
empty neighbors. The SMAC procedure is to assign either
u;; or v;; by use of the continuity equation with both of the
other surface velocities unchanged. The four possibilities are
shown in Figs. 10a—d, with the velocity to be assigned
indicated in each case. For the situations shown in Figs. 10a
and b, the SMAC procedure is the same as the MAC
procedure. For the situations of Figs. 10c and d, however,
the surface velocity assigned by the SMAC procedure is not
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FIG. 10. The surface velocity assigned in the SMAC methed for a surface cell with three empty neighbors (N = non-empty},
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the same one assigned by the MAC procedure, and use of
the SMAC procedure for either of these two situations will
artificially introduce asymmetry into the velocity field.

5. JUST OUTSIDE TANGENTIAL VELOCITIES

Referring again to Fig. 4, a velocity such as v, ; that is associ-
ated with a face between two empty cells which themselves
are adjacent to surface cells is termed a just outside tangential
velocity. Like surface velocities, just outside tangential veloci-
ties must also be determined in both Steps 5 and 7 of each
. computational cycle. The just outside tangential velocities as-
signed in Step 5 influence the movement of markers that occurs
in Step 6. while those assigned in Step 7 provide boundary
conditions for the calculation of the entative internal velocities
in the next computational cycle.

Previous procedures for the assignment of just ouside tangen-
tial velocities only satisfy very roughly the free surface tangen-
tial stress condition. In addition, the tangential stress condition
itself applies only at the free surface, while the velocities em-
ployed in an attempt to satisfy it are separated by the width of
a cell. Therefore, an entirely different rationale for the assign-
ment of just outside tangential velocities is used in the new
method. The rationale used is that a just outside tangential
velocity must be assigned in such a way that the implied mass
transfer across the face between the related surface cells is
neither exaggerated nor reduced.

The rationale supporting the new just outside tangential ve-
locity assignment procedure is explained with reference to Fig.
11. Since the control volume concept is adopted in the develop-
ment of the numerical representations of the governing equa-
tions, the velocity located at the center of a cell face represents
the average fluid velocity on that cell face. Consider Fig. 11a,
where points 1, 2, 3, and 4 represent the mid-points of the faces
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(b

Just outside tangential velocity assignment and mass transfer.

of four cells, and point 5 represents the intersection of a free
surface with the face of one of these cells. In Fig. 11b, uy, u,,
and u; represent the average velocities on their respective cell
faces. Therefore, the area enclosed by lines connecting points
1-a—b-c-d—e—f—g—1 represents the volume of fluid AV passed
through line segments 1-2—3-5 during a time interval 6t. Now,
if one imagines a vertical column of markers that coincides
with the right faces of the cells shown in Fig. 11a, then the
velocity assigned to any one of these markers for marker move-
ment would simply be determined by linear interpolation be-
tween the discrete velocities above and below the marker in
question. The volume of fluid AV, passed through the faces of
these cells during the time interval 8z that is implied by these
marker velocities is represented by the area 1-h-2-i-3-
j—e—f—g—1. The area 3—j—e-3 represents the difference be-
tween AV and AV,. Consequently, the mass transfer through
the right face of the control volume of the surface cell that is
implied by the marker velocity assignment scheme is larger
{(since u, is greater than u;) than that which occurs if u; is
treated as the average velocity on the right face of the control
volume. In order to eliminate this difference, the just outside
tangential velocity u, must be set equal to the value of the
nearest internal velocity ;. This is the procedure used in the
new method.

Although the rationale is completely different, the resulting
new just outside tangential velocity assignment procedure is
similar to the one used in the original MAC method. If any
other scheme is used, including the SMAC scheme, the mass
transfer through the control volume that coincides with the
surface cell that is implied by the marker velocity assignment
scheme will be either more or less than the mass transfer that
is implied by treating the discrete velocity associated with the
center of the cell face as the average velocity for that face. The
new treatment of just outside tangential velocities differs from
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the MAC treatment in one important respect. The MAC treat-
ment of just outside tangential velocities can lead to asymmet-
ries when fluid surfaces are coming together. This problem is
avoided in the new method; in contrast with either the MAC

or SMAC method, just outside tangential velocities are assigned |

and used only when needed. They are not stored; only surface
and internal velocities are stored. Therefore, when two fluid
fronts approach each other, the just outside tangential velocity
between them will be assigned the value of one internal velocity
when the boundary condition associated with one of the con-
verging fluid fronts is under consideration, and the value of a
different internal velocity when the boundary condition associ-
ated with the other fluid front is under consideration, This is
a subtle, but very important, point. The just outside tangential
velocity that is stored in either the MAC or SMAC method is
used as a boundary condition in the computations of the veloci-
ties of the markers and the tentative internal velocities associ-
ated with both fluid fronts, despite the fact that it is only related
to the motion of one of the twe fluid fronts. It is entirely
unrelated to the motion of the other fluid front and, therefore,
inappropriate for use as a boundary condition for that fluid
front. This shortcoming of the MAC and SMAC assignment
procedures may be even more important than the fact that they
both also artificially introduce asymmetry.

6. NUMERICAL EXAMPLES

Four examples are presented fo illustrate the importance of
the procedures used for the assignment of free surface velocity
boundary conditions in the simulation of free surface fluid flow.
The first example illustrates the fact that previous procedures
for the assignment of free surface velocity boundary conditions
artificially introduce asymmetry. Two cavity filling examples
and a broken dam example demonstrate the significant improve-
ments achieved by use of the more accurate new free surface
velocity boundary conditions presented in this paper. In all
examples, the solutions are illustrated by figures that indicate
the fluid-filled regions at specific times. Thick solid lines repre-
sent rigid boundaries, thin dotted lines indicate the computa-
tional grid, and dots represent markers,

6.1, ustration of Asymmetry

To dramatically illustrate the fact that the SMAC procedures
for the assignment of free surface boundary conditions artifi-
cially introduce asymmetry, it is demonstrated that there are
actually four different SMAC sclutions for half of any symmet-
rical problem. If one half of the problem is simulated, one
solution is obtained. If the other half of the problem is simulated,
a second solution is obtained. If the complete symmetrical
problem is simulated, the left and right halves of the complete
solution represent third and fourth solutions. As a direct result of
the fact that some of the SMAC free surface velocity boundary
condition assignment procedures are inherently asymmetrical,
all four solutions are different.
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In Fig. 12, different SMAC solutions at time t = 165 of a
symmetrical cavity-filling problem are presented. At ¢ = O,
fluid began to enter the cavity from below with a constant
velocity. The solutions of the left half of the problem, the right
half of the problem, and the complete problem are shown. Since
the problem itse!f is symmetrical, the solutions of the left and
right halves of the problem should be mirror images of each
other, and they should be identical to the left and right halves,
respectively, of the solution of the complete problem. Careful
inspection of Fig. 12 reveals, however, that this is not the case.
Instead, Figs. 12a and b reveal that the solutions of the left and
right halves of the problem are not mirror images of each other;
Fig. 12¢ reveals that the left haif of the complete solution is
not the mirror image of the right half of the complete solution;
and comparison of Figs. 12a and b with Fig. 12¢ reveals that
the solutions of the left and right halves of the problem are not
even the same as the left and right halves, respectively, of the
solution of the complete problem. As explained in preceding
sections and demonstrated in the following examples, this fun-
damental problem is eliminated by use of the new procedures
for the assignment of free surface velocity boundary conditions.

6.2. First Cavity-Filling Example

For this example, fluid enters the cavity with a uniform
vertical velocity of U = | cm/s through a gate in the center of
the bottom side of the cavity. The cavity is 10 by 7.5 ¢m and
the cell dimensions 8x and 8y are both equal to 0.5 em, resulting
in a computational domain that is 20 cells by 15 cells. The gate
width is six cells (3 cm). The values used for the acceleration
of gravity and the kinematic viscosity of the fluid are g =
1 em/s® and » = 0.2 cm?/s, respectively. This is a perfectly
symmetrical problem. The parameter values used fer this exam-
ple are exactly the same as those used to obtain the solutions
shown in Fig. 12.

Three solutions of this symmetrical problem are shown in
Fig. 13. For this example, the SM method [8] is essentially an
efficient version of the SMAC method. The SM method em-
ploys only one string of markers along the free surface and
requires only the reflagging of the cells along and adjacent to
the free surface. The SM method, therefore, requires consider-
ably less computer time and memory than the SMAC method.
In other respects, however, especially including the procedures
for the assignment of free surface velocity boundary conditions,
the SM method is identical to the SMAC method. The SM
method modified by the incorporation of the new free surface
velocity boundary conditions presented in this paper is referred
to here as the VELBC method. Comparisons between VELBC
results and either SMAC or SM results illustrate the significance
of the use of the new free surface velocity boundary conditions.

In the illustrations of SMAC selutions, markers are distrib-
uted throughout the fluid-filled region, whereas a single string
of markers surrounds the fluid-filled region in the illustrations
of SM and VELBC solutions. Sixteen markers are initially
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FIG. 12. Tlustration of asymmetry in SMAC solutions of a cavity filling problem (g = 1 cm/s’, » = 0.2 cm/s, U = | em/s, t = 165).

assigned to each fluid-filled cell in the SMAC simulation, and
the maximum distance between consecutive surface markers is
Ox/4 in the SM and VELBC simulations. Consequently, the
distance between adjacent markers is initially the same (1.25
mm) in all three simulations.

Inspection of Fig. 13 reveals that the SMAC solution of this
symmetrical problem immediately becomes asymmetrical and
remains so. This artificially induced asymmetry is caused by
the free surface velocity boundary conditions that are employed
in the SMAC method.
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FI1G. 13. SMAC, SM, and VELBC solutions of the first cavity filling problem with g = 1 cm/s%, » = 0.2 cm?¥s, U = 1 cm/s, and 8§t = 0.01 5 at (a) 2 5,

(b) 45, (c) 65, and (d} § 5.
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The SM solution shown in Fig. 13 faithfully reproduces the
SMAC results, including the asymmetries. In Ref. [8] a number
of additional examples are presented which also demonstrate
that the SM method, although far more efficient than the SMAC
method, produces results that are equivalent to those obtained
by use of SMAC. As shown in the next example, however, this
equivalence between SMAC and SM results exists only if the
markers in the SMAC simulation do not become too sparse for
the cells to be flagged correctly.

The VELBC results shown in Fig. 13 demonstrate that the
replacement of the SMAC free surface velocity boundary condi-
tions with the new conditions eliminates the asymmetries that
are present in the SMAC and SM results. The only difference
between the VELBC method and the SM method is that the
new procedures for the assignment of free surface velocity
boundary conditions are used in the VELBC method in lieu of
the SMAC procedures which are used in the SM method. As
a direct result of the use of the new free surface velocity
boundary conditions, the flow pattern associated with the
VELBC solution shown in Fig. 13 is symmetrical, as it should
be for this symmetrical problem.

6.3. Second Cavity-Filling Example

The only difference between this example and the previous
example is that the value of the kinematic viscosity is much
smaller in this example. The kinematic viscosity in this example
is 0.01 cm¥s, which is appropriate for water at room tempera-
ture, whereas the value used in the first example is an order of
magnitude larger (0.2 cm¥s).

The SMAC, SM, and VELBC results for this symmetrical
problem are displayed in Fig. 14. As in the first cavity-filling
example, the SMAC solution is asymmetrical soon after the
fluid enters the cavity. In contrast with the first example, how-
ever, the SMAC soiution of this second cavity-filling example
breaks up as shown in Figs. 14c and d. The breakup of the
SMAC sclution is due both to the deficiencies of the SMAC
procedures for the assignment of free surface velocity boundary

conditions as well as to reflagging errors that occur in a SMAC,

simulation when the markers become too sparse for the cells
to be reflagged correctly. This difficulty associated with the
use of markers in the MAC or SMAC method has been referred
o in Refs. {4, 8]. In the first cavity-filling example, the viscosity
is one order of magnitude larger, and the markers do not become
100 sparse in the SMAC simulation.

Since the SMAC solution breaks up, the SM solution shown
in Fig. 14 for this example does not reproduce the SMAC
results. The differences between the SMAC and SM results for
this example are due to the fact that the spacing between surface
markers is managed in the SM method. Specifically, in the SM
method, a new marker is added midway between two adjacent
surface markers when the distance between the markers exceeds
a predetermined value. The ability to add surface markers is
an important additional advantage of the SM method. The prob-
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lems that arise during a SMAC simulation simply because
the markers become too sparse in a certain region for proper
reflagging to occur are eliminated in the SM method. It is
especially important to note, however, that the elimination of
the SMAC reflagging problems by use instead of the SM method
does not eliminate all of the difficulties associated with the
simulation of this problem. The SM solution shown in Fig. 14
is asymmetrical and clearly not a valid solution. The very
unusual shape of the free surface in the SM solution is a clear
indication that incorrect velocities exist. The problems mani-
fested in the SM solution of this example have nothing to do
with the use of surface markers in lieu of markers distributed
throughout the fluid. Instead, they are due to the use in the SM
method of the SMAC procedures for the assignment of free
surface velocity boundary conditions,

The VELBC results shown in Fig. 14 demonsirate the dra-
matic effect on the solution for this problem of the replacement
of the SMAC free surface velocity boundary conditions with
the new free surface velocity boundary conditions. The VELBC
solution for this problem is symmetrical, as it should be, and,
most importantly, it does not exhibit the breakup exhibited by
the SMAC solution.

Comparison of the SM and SMAC results shown in Fig. 14
reveals the effect of the elimination of the reflagging difficulties
associated with the use of the SMAC method. Subsequent com-
parison of the VELBC results with the SM results then reveals
the additional effect of the use of the new free surface velocity
boundary conditions. The combined effect of the use of the
new free surface velocity boundary conditions and of surface
markers is illustrated by the dramatic difference between the
VELBC and SMAC results shown in Fig. 14.

It may be somewhat surprising that changes in the treatment
of the free surface velecity boundary conditions can have such
a dramatic effect on the simulation. The free surface velocity
boundary conditions, however, affect every aspect of the simu-
lation. The tentative velocity field is directly affected by the
free surface velocity boundary conditions. The tentative veloc-
ity field in turn directly affects the pressure potential field. Then,
the final velocities are computed from the tentative velocity and
pressure potential fields. Next, free surface velocity boundary
conditions must be assigned, and they then directly affect the
movement of the free surface. After the advance of the free
surface, free surface velocity boundary conditions must be ad-
justed, including the assignment of any unknown new fluid
cell internal velocities. These free surface velocity boundary
conditions subsequently directly affect the determination of the
tentative velocity field in the next computational cycle and
so on,

If, instead of decreasing the value of the kinematic viscosity
of the fluid as compared with the value used in the first cavity-
filling example, the value of the acceleration of gravity is in-
creased, results similar to those shown in Fig. 14 are obtained.
That is, the SMAC solution exhibits breakup in addition to
asymmetry, while the new VELBC solution is symmetrical
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with no breakup. With the vse of the new free surface velocity
boundary conditions, realistic values of g and » can be accom-
modated without difficulty. This is a very important point. The
new free surface velocity boundary conditions fundamentally
affect the simulation. They eliminate asymmetry, and they also
have a very significant effect on the range of application of the
simulation method itself.

6.4. Broken Dam Example

To further emphasize the fact that the significance of the
new procedures is not limited to the elimination of asymmetry,
a broken dam example is presented. The broken dam problem
is not a symmetrical problem. The SMAC and VELBC results
for this problem are presented in Fig. 5. In the broken dam
problem, a vertical fluid column located in the lower left section
of the computational region is initially at rest. Gravity acts
downward, and nothing constrains the fluid on the right side
of the fluid column, Consequently, the fluid immediately begins
to flow down and to the right as shown in Figs. 15a—c. The
dimensions of the initial fluid column are 10 cells by 10 cells

(5 by 5 cm). The value used for g is 980 cm/s’, which is
appropriate for the Earth, and the value nsed for vis 0.01 cm?/s,
which is appropriate for water at room temperature,

As shown in Figs. 15d—f, the SMAC simulation breaks up
when these realistic values of g and v are used. As discussed
.in connection with the previous example, this breakup of the
SMAC solution is related both to the deficiencies of the SMAC
procedures for the assignment of free surface velocity boundary
conditions as well as to reflagging errors that occur in the
SMAC simulation when the markers become too sparse for the
cells to be reflagged correctly. Since surface tension is not
modeled in any of the simulation methods under consideration,
the breakup of a real fluid that can occur after striking a solid
boundary cannot be simulated properly by any of the methods.
The breakup displayed in Figs. 15d-f is a numerical artifact.
If the SMAC simulation is allowed to continue past the time
associated with Fig. 15f, the markers become scattered through-
out the computational region, As noted, it is possible for markers
in the SMAC solution to become too sparse for all cells along
the surface to be flagged correctly. To investigate the possibility
that this could be the cause of the breakup shown in Fig. 15,
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another SMAC simulation of the same problem was conducted
using a greatly increased number of markers, 64 per cell, rather
than 16 per cell. Breakup also occurred in this second SMAC
simulation. The use of more markers simply altered the specific
details of the breakup.

In this example, as well as in the previous one, the use of
the new free surface velocity boundary conditions and of surface
markers effectively eliminates the breakup and enables the
new VELBC simulation to accommodate without difficulty the
realistically high and low values of g and v, respectively. The
dramatic differences between the SMAC and VELBC results
for this asymmetrical problem add emphasis to the fact that the
significance of the fundamental contributions to the treatment of
free surface velocity boundary conditions extends beyond the
elimination of artificially induced asymmetry.

7. CONCLUSIONS

Free surface velocity boundary conditions play a critical role
in the simulation of fluid low problems involving free surfaces.

New, more accurate procedures for the application of free sur-
face velocity boundary conditions are presented in this paper.
The significant advantages of the use of these new procedures
are demonstrated by examples.

A useful tangible indicator of the accuracy of the application
of free surface velocity boundary conditions is the symmetry
of the solution of a symmetrical problem, It is shown that
previous procedures for the application of free surface velocity
boundary conditions artificially introduce asymmetry. No asym-
metry is introduced by use of the new procedures.

More importantly, it is shown that, in addition to the elimina-
tion of asymmetry, the use of the new procedures extends the
range of application of the simulation method. When previous
procedures for the application of free surface velocity boundary
conditions are used, it is observed that the solution breaks up
when realistically low values of viscosity and/or realistically
high values of gravity are used. However, solutions without
breakup are obtained simply by replacing the previous proce-
dures for the application of free surface velocity boundary
conditions with the new procedures presented in this paper.
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